Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Melanie Rademeyer

School of Chemistry, University of KwaZuluNatal, Howard College Campus, Durban 4041, South Africa

Correspondence e-mail:
rademeyerm@ukzn.ac.za

4-Aminopyridinium nitrate

The structure of the organic-inorganic hybrid material 4-aminopyridinium nitrate, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{NO}_{3}{ }^{-}$, exhibits classical and bifurcated strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, as well as weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. Organic 4-aminopyridinium cations and inorganic nitrate anions interact to form a one-dimensional hydrogen-bonded ribbon in the a direction. Neighbouring ribbons interact to form twodimensional corrugated hydrogen-bonded sheets parallel to the $a c$ plane.

Comment

The crystal structure of 4-aminopyridinium nitrate, (I), has been determined as part of an ongoing investigation into the effect of various anions on the structures and hydrogenbonding connectivities of organic-inorganic hybrid compounds. The crystal structures of two polymorphs of 4aminopyridinium perchlorate have been reported previously (Czupinski et al., 2002), these being the only examples of structures that could be located in the literature containing a 4 -aminopyridinium cation and a non-metallic polyatomic anion.

(I)

The molecular structure of (I), as well as the atomic numbering scheme employed, are illustrated in Fig. 1. One 4 -aminopyridinium cation and one discrete nitrate anion comprise the asymmetric unit.

Figure 1
The molecular structure of (I), showing the atomic numbering scheme and with displacement ellipsoids at the 50% probability level.

Received 21 June 2005
Accepted 29 June 2005
Online 13 July 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 2
A packing diagram for (I), viewed down the c axis. H atoms have been omitted for clarity.

The molecular packing is illustrated in Fig. 2. Alternating pairs of cations and anions pack parallel to the $a b$ plane. $\mathrm{N}-\mathrm{O}$ bond lengths for the nitrate anion range from 1.2383 (15) to $1.2632(15) \AA$, and $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles range from 118.48 (12) to $121.80(13)^{\circ}$.

4-Aminopyridinium cations and nitrate anions interact via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). The structure can be considered as consisting of one-dimensional hydrogen-bonded ribbons extending in the a direction, as illustrated in Fig. 3. Each ribbon consists of alternating cations and anions, with the aromatic groups of the organic cations being parallel. In the ribbon, each cation interacts with two different nitrate anions via hydrogen-bonding interactions. Within a cation, atom N 1 forms a bifurcated interaction through atom $\mathrm{H} 1 B$ to atom O 1 of an anion. On the opposite side of the molecule, atom N 2 interacts with atom $\mathrm{O} 1(x-1, y, z)$ through a classical hydrogen bond involving atom $\mathrm{H} 2 A$.

Neigbouring one-dimensional ribbons are connected through the strong bifurcated hydrogen-bonding interactions $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ and $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2$, to form corrugated two-dimensional sheets, as illustrated in Fig. 4. It is noteworthy that atom O 3 is not involved in strong hydrogenbonding interactions and exhibits a short $\mathrm{N}-\mathrm{O}$ bond of 1.2383 (15) \AA, whereas the $\mathrm{N}-\mathrm{O}$ bonds participating in strong hydrogen bonds ($\mathrm{N} 3-\mathrm{O} 1$ and $\mathrm{N} 3-\mathrm{O} 2$) are elongated. In the two-dimensional sheet, however, two additional, weaker C $\mathrm{H} \cdots \mathrm{O}$ interactions involving atom O 3 are present, namely $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1(1-x, 1-y,-z)$ and $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3\left(x, \frac{1}{2}-y\right.$, $\frac{1}{2}+z$), at distances of 3.364 (3) and 3.387 (3) A., respectively.

Thus, in terms of the connectivity observed in this structure, the nitrate anion can be described as a four-connecting node with bifurcated and normal hydrogen bonds, resulting in a two-dimensional sheet structure. Stacking of the two-dimensional sheets in the b cell direction gives the complete crystal structure.

Experimental

4-Aminopyridinium nitrate was prepared by the dropwise addition of nitric acid (70\%, Aldrich) to a chloroform (99\%, Saarchem) solution

Figure 3
A view of the one-dimensional hydrogen-bonded (dashed lines) chain, parallel to the a axis.

Figure 4
A view of two-dimensional hydrogen-bonded (dashed lines) sheet, parallel to the $a c$ plane.
of 4-aminopyridine ($98+\%$, Aldrich), in stoichiometric amounts. The solution was left to evaporate to dryness at room temperature. A colourless needle crystal of (I) was cut to dimensions $0.2 \times 0.2 \times$ 0.2 mm and employed in the diffraction study.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{NO}_{3}{ }^{-}$
$M_{r}=157.14$
Monoclinic, $P 2_{1} / c$
$a=9.192$ (4) A
$b=6.996$ (4) \AA
$c=10.869$ (5) \AA
$\beta=93.60$ (4) ${ }^{\circ}$
$V=697.5(6) \AA^{3}$
$Z=4$
$D_{x}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Oxford Excalibur2 diffractometer $\omega-2 \theta$ scans
6090 measured reflections
2220 independent reflections 1369 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.116$
$S=0.94$
2220 reflections
108 parameters

Mo $K \alpha$ radiation

Cell parameters from 209 reflections
$\theta=2-30^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=200$ (2) K
Fragment cut from needle,
colourless
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=31.8^{\circ}$
$h=-13 \rightarrow 13$
$k=-10 \rightarrow 8$
$l=-16 \rightarrow 15$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0545 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1B \cdots O2	$0.86(2)$	$2.58(2)$	$3.302(2)$	$143(2)$
N1-H1B \cdots O1	$0.86(2)$	$2.14(2)$	$2.952(2)$	$159(2)$
N2-H2A O $^{\mathrm{i}}$	$0.88(2)$	$1.90(2)$	$2.784(2)$	$175(2)$
N2-H2A $\cdots \mathrm{O}^{\mathrm{i}}$	$0.88(2)$	$2.66(2)$	$3.218(2)$	$122(2)$
N2-H2A \cdots N $^{\mathrm{i}}$	$0.88(2)$	$2.63(2)$	$3.421(2)$	$149(2)$

Symmetry codes: (i) $x-1, y, z$.
All H atoms involved in hydrogen bonding ($\mathrm{H} 1 A, \mathrm{H} 1 B$ and $\mathrm{H} 2 A$) were located in a difference map and refined independently. All other H atoms were placed in calculated positions, with an aromatic $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$, and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlisCCD (Oxford Diffraction, 2003); cell refinement: CrysAlisCCD; data reduction: CrysAlisRED (Oxford

Diffraction, 2003); program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The author acknowledges funding received for this work from the University of KwaZulu-Natal Research Office and the National Research Foundation (GUN: 2054350).

References

Czupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. \& Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Oxford Diffraction (2003). CrysAlisCCD and CrysAlisRED. Versions 1.170. Oxford Diffraction Ltd., Abingdon, Oxford, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

